

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 432-437 Xing Mingqing

432

The differentiation strategy for proprietary software firms when
Open Source software appears

Mingqing Xing1,2*

1School of Economics and Management, Weifang University, Weifang, 261061, China

2Neural Decision Science Laboratory, Weifang University, Weifang, 261061, China

Received 1 October 2014, www.cmnt.lv

Abstract

By extending the Hotelling model, this paper studies the software location and differentiation strategy for proprietary software firm

when open source software emerges. It assumes that proprietary software firm pursues profit maximization and open source software

can be freely available and mainly finds that: (i) Higher (resp. lower) the learning (maintenance or development) costs of open source

software, smaller (resp. greeter) the software differentiation. (ii) the compatibility degree between open source and proprietary software

affects the software differentiation strategy for proprietary software firm. (iii) the impact of network externalities or user’s software

development skills on proprietary software firm’s software location and differentiation strategy may depend on the compatibility degree
between open source and proprietary software.

Keywords: software differentiation, proprietary software, Open Source software, compatibility, network externality, hotelling model

1 Introduction

Since 1990s, the rapid development of open source

software is a significant phenomenon in software

industries, which shakes software industries dominated by

proprietary software. For examples, Linux holds about

30% market and Microsoft’s windows shares

approximately 50% market share in server operating

system market (Netcraft’s survey, 2001) [1]. Apache (an

open source software) shares more than 60% of web sits

on the Internet in web server market, while Microsoft’s

Internet Information Service (a proprietary software)

supports less than 30% market share (Netcraft’s survey,

2006) [2]. Sendmail, an open source software, commands

about 80% market share in the e-mail traffic market

(Weber, 2004) [3]. Increasingly influential open source

software changes the competition structure of software

market and competitive strategies for software producer.

According to O’Reilly’s definition [4], open source

software is software, whose sources codes are allowed

software developers to share, identify and correct errors,

and redistribute. The rising and spreading of open source

software arouse the attention of economic and

management scholars. Some of them study the competition

strategy in software industries, in which open source

software and proprietary software coexist. Dalle and

Jullien (2002) [5] analyze technological competition

between open source and proprietary software by an

interaction theory model. Raghunathan et al. (2005) [6]

compare the optimal quality under proprietary software

monopoly and duopoly competition between proprietary

and open source software. Meng and Lee (2005) [7]

* Corresponding author’s e-mail: mqxing1979@163.com

consider the compatibility strategy between proprietary

and open source software. Economides and Katsamakas

(2006) [8] assume the software platform may be either

proprietary or open source, but the applications are

proprietary, and then examine platform competition in

which each software platform supports multiple

applications. Lin (2007) [9] investigates how user skills

affect the market where proprietary software competes

with open source software. Xing (2010) [10] studies

quantity competition between open source and proprietary

software. Cheng, Liu and Tang (2011) [11] examine the

impact of network externalities on the competition

between open source and proprietary software. Gramstad

(2014) [12] develops a model to analyze competition

between a commercial software producer and a free-of-

charge open source software substitute in the presence of

software piracy. From the perspective of technology,

quality, compatibility, platform, user skill, quantity,

network externality and piracy, the above literature

analyzes competition between proprietary and open source

software. However all of them do not consider the software

location and differentiation strategy in a software industry

when open source software appears.

As we all know, the software industry usually presents

network externalities. The network externality in an

industry is that the benefit that consumers obtain from

purchasing one or several of its products depends on the

number of other consumers that use the same or

compatible products (Katz and Shapiro, 1985) [13]. This

paper supposes that there coexist both open source

software and proprietary software in a software market

with network externalities. Through modifying the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 432-437 Xing Mingqing

433

Hotelling model, the paper studies the software location

and differentiation strategy for proprietary software

provider when open source software emerges and how the

learning (maintenance or development) costs of open

source software, user’s software development skills,

network externality and software compatibility influence

the software location and differentiation.

The rest of this paper is organized as follows. Section

2 presents the basic model. Section 3 solves the model.

Section 4 analyzes the model solution. Final part concludes

this paper.

2 The basic model

There are two firms in a software market. One provides

proprietary software (PS) and the other one provides open

source software (OSS) (note that open source software is

usually provided by an open source community). They are

noted by firm ‘ p ’ and firm ‘ o ’ respectively. Borrowing

ideas from Hotelling (1929) [14], the market is denoted by

a unit linear interval ‘[0, 1]’ and consumers are indexed by

their preference for the software, which is measured by

parameter ‘ x ’, and uniformly distributed with density 1

over the software market. Assume that proprietary

software locates at ‘ px ’ and open source software locates

at ‘1’ in the market. The indirect utility for the generic user

at x when he/she purchases proprietary and open source

software are respectively given by

() ()2

p p p o p pu v q k q p x x       , (1)

() ()2

o o o p ou v q k q q l 1 x        . (2)

In (1) and (2), v denotes the intrinsic utility (or

quality) generated by proprietary software or open source

software (for simplicity, this paper assumes this parameter

is equal for proprietary and open source software).

()p p oq k q  and ()o o pq k q  represent the utilities

from network externalities when using proprietary and

open source software respectively, in which  is the

intensity of network externalities.
iq (,i p o) is firm i ’s

software output (or network scale). pk is the compatibility

degree of proprietary software to open source software and

ok is the compatibility degree of open source software to

proprietary software. pp is the price of proprietary

software (since open source software is usually free,

op =0); ()2

px x  and ()21 x  measure the user’s

utility losses associated with using proprietary and open

source software that differs from his/her most preferred

software respectively, in which  denotes the degree of

differentiation (we set 1  for simplicity). l is the

learning (maintenance or development) costs if users buy

open source software.  is the degree of contribution for

each user to the quality of open source software (or call it

user’s software development skills parameter).

To make sure the software market is fully covered, v

is assumed to be big enough. Consumers have unit demand.

That is, each consumer purchases unit software product

from either firm ‘ p ’ or firm ‘ o ’. Let x denote the

preference of consumer who is indifferent between

purchasing proprietary and open source software. x

satisfies

() ()

() ()

2

p p o p p

2

o o p o

v q k q p x x

v q k q q l 1 x

     

     
 (3)

Since the software market is fully covered and

consumers uniformly distribute, there are p oq q 1  ,

x

p
0

q dx  and
1

o
x

q dx  . Combining with (3), we obtain

the demand functions

()

() ()

2

p p p

p

p p o

1 x 1 k l p
q

2 1 x k k 2

    


    
, (4)

()

() ()

2

p p p

o

p p o

1 x 1 k l p
q 1

2 1 x k k 2

    
 

    
 (5)

According to (4) and (5), the profit functions for

proprietary and open source software firms are given

respectively by

[()]

() ()

2

p p p p

p p p

p p o

1 x 1 k l p p
p q

2 1 x k k 2

    
  

    
, (6)

o o op q 0   . (7)

Note that: since the marginal cost for software product

is generally very low, this study assumes that the marginal

costs for both proprietary software and open source

software are equal to zero.

The timing of software location and pricing is as

follows. In the first stage, proprietary software firm

determines its software locations. In the second stage,

firms set their software prices.

3 The model solutions

The model is solved by backwards induction. Thus, the

price stage is analyzed firstly and then the location stage is

studied.

The Price Stage.

Since open source software is free for users, we only

need to solve the optimal price for proprietary software.

According to (6), the first-order condition is

()

() ()

2

p p p p

p p p o

1 x l 1 k 2p
0

p 2 1 x k k 2

     
 

     
. (8)

Solving (8), the optimal price for proprietary software

is given by

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 432-437 Xing Mingqing

434

*
()2

p p

p

1 x l 1 k
p

2

    
 . (9)

To make sure *

pp the unique optimal solution, *

pp

must satisfy the second-order condition, which requires

() ()

2

p

2

p p op

2
0

2 1 x k k 2p

  
 

    
. (10)

The inequality (10) holds if

() ()p p o2 1 x k k 2 0      . (11)

This paper supposes the parameters meet the inequality

(11).

Substituting (9) into (6), we derive proprietary

software firm’s profit function on its location variable px

[()]

[() ()]

2 2

p p

p

p p o

1 x l 1 k

4 2 1 x k k 2

    
 

    
. (12)

The Location Stage.

Since open source software’s location is exogenous

(
ox =1), we only need to solve the optimal location for

proprietary software. Taking the derivative of profit

function (12) with respect to px , and then setting it equal

to zero

[((

))
()

()]

[() ()]

2

p2

p

p o p

p

pp

2

p p p o

3x 2 2 2
1 x l

k k x 1
1 k

l 1 k
0

x 2 2 1 x k k 2

  
     

                 
 

     
 (13)

Solving (13), we derive four solutions that satisfy the

first-order condition. According to the profit non-negative

(0p ) and the second-order condition (2 2 0p px  ),

three solutions are excluded. The optimal location of

proprietary software is given by

*

()

(())

(())

p o

2

p o

p

p

2 2 k k

2 2 k k

3 1 l 1 k
x

3

    
 
    
 
      

 . (14)

This study supposes that the parameters can ensure the

inequality *0 1px  (There have some parameter space

areas meeting this inequality through the numerical

analysis).

4 Comparative static analysis

This section analyzes how the parameters of software

learning (maintenance or development) costs, user’s

software development skills, network externalities and

software compatibility influence the software location

(measured by *

px) and differentiation (measured by

*1)px strategy for proprietary software firm.

Taking the derivative of *

px with respect to l , we

obtain

*

(())

(())

p

2

p o

p

x 1
0

l 2 2 k k
2

3 1 l 1 k


 

    

    

. (15)

Thus, * *()p p1 x l x l 0       and the following

proposition is obtained.

Proposition 1: (i) Higher (resp. lower) the learning

(maintenance or development) costs of open source

software, proprietary software locating closer to (resp. far

away) the open source software’s location; (ii) Higher

(resp. lower) the learning (maintenance or development)

costs of open source software, smaller (resp. greeter) the

software differentiation between proprietary and open

source software.

The above proposition shows that the learning

(maintenance or development) costs of open source

software can affect the software location and

differentiation strategy for proprietary software firms. For

example, in operating system market, most of users are

non-computer professional. They will bear high learning

(maintenance or development) costs when use the open

source operating system (Linux) and thus prefer to use the

proprietary operating system (Windows). There are some

similarities between Windows and Linux operating

system. While in web server market most of users are

computer professional. They will bear low learning

(maintenance or development) costs when use the open

source software (Apache) and thus not prefer to use the

proprietary software (Microsoft’s IIS). There exist very

large differences between Apache and Microsoft’s IIS.

According to Meng and Lee (2005) [7], there are four

compatibility strategies for proprietary software to open

source software: incompatibility, two-way compatibility,

inward compatibility and outward compatibility. Now we

analyze how network externalities and user’s development

capability affect the software location and differentiation

strategy for proprietary software firm in the above four

compatibility cases respectively.

When proprietary software and open source software

are incompatibility (p ok = k = 0), this is the case that two

types of software are fully not compatible with each other.

For example, Windows, a proprietary software product, is

incompatible with Linux, an open source software product.

Proposition 2: When p ok = k = 0 , there are:

(i)

*

px
0





 and

*()p1 x
0

 



, if

3
l

2 16


  ;

*

px
0






COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 432-437 Xing Mingqing

435

and

*()p1 x
0

 



, if

3
l

2 16


  ;

(ii)

*

px
0





 and

*()p1 x
0

 



, if

4

1
l   ;

*

px
0






and

*()p1 x
0

 



, if

4

1
l   .

Proof.

* [2 (2) ()]2

p

1
x 2 2 3 1 l 1

3
      

when p ok = k = 0 . Taking derivatives of *

px with

respect to  and  respectively, we have

*
4(2)

[]
2 (2) ()

p

2

x 1 2 3
2

3 2 3 1 l

   
  

    

and

*
2(2)

[1]
2 (2) ()

p

2

x 1 2 3

3 2 3 1 l

   
  

    
.

Thus,

*

px
0





 and

*()p1 x
0

 



, if

3
l

2 16


  ,

*

px
0





 and

*()p1 x
0

 



, if

3
l

2 16


  ,

*

px
0






and

*()p1 x
0

 



, if

4

1
l   ,

*

px
0






and

*()p1 x
0

 



, if

4

1
l   .

Proposition 2 demonstrates that, in the case of

incompatibility, when the learning (maintenance or

development) costs of open source software are high

enough, the intensity of network externalities (or user’s

development skills) higher, the location of proprietary

software closer to open source software and software

differentiation smaller, and the opposite situation may

appear when the learning (maintenance or development)

costs of open source software are low enough. However,

when user’s development skills are low enough ()3 8

the intensity of network externalities higher, the location

of proprietary software closer to open source software and

software differentiation smaller no matter the level of open

source software’s learning (maintenance or development)

costs. When the intensity of network externalities is high

enough (1 4 ), the user’s development skills higher,

the location of proprietary software closer to open source

software and software differentiation smaller no matter the

level of open source software’s learning (maintenance or

development) costs.

When proprietary software and open source software

are two-way compatibility (p ok = k = 1), this is the case

that two types of software are compatible with each other.

For example, Internet Explorer, a proprietary software

product, is two-way compatible Mozilla, an open source

software product.

Proposition 3: When p ok = k = 1 , there are:

(i)

*

px
0





 and

*()p1 x
0

 



;

(ii)

*

px
0





 and

*()p1 x
0

 



, if

4

1
l  ;

*

px
0





 and

*()p1 x
0

 



, if

4

1
l  .

Proof.

* [() ()]2

p

1
x 2 2 3 1 l

3
    

when p ok = k = 1 . Taking derivatives of *

px with

respect to  and  respectively, we have

*

0
px



 and

*

2

1 2(2) 3
[1]

3 2 (2) 3(1)

px

l



  

  
  

    

Therefore,

*()p1 x
0

 



,

*

px
0





 and

*()p1 x
0

 



, if

4

1
l  ,

*

px
0





 and

*()p1 x
0

 



, if

4

1
l  .

The above proposition indicates that, in the case of

two-way compatibility: (i) the software location of

proprietary software and software differentiation are not

affected by the network externalities; (ii) when the

learning (maintenance or development) costs of open

source software are high enough, the user’s development

skills higher, the software location of proprietary software

closer to the location of open source software and software

differentiation smaller, and the opposite situation appears

when the learning (maintenance or development) costs of

open source software are low enough.

When proprietary software and open source software

are inward compatibility (pk = 1 and
ok = 0), this is the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 432-437 Xing Mingqing

436

case that proprietary software is compatible open source

software, but open source software is not compatible with

proprietary software. For example, Microsoft IIS, a

proprietary web server, is inward compatible with Apache,

an open source web server.

Proposition 4: When pk = 1 and
ok = 0 , there are:

(i)

*

px
0





 and

*()p1 x
0

 



;

(ii) when
4

1
l   ,

*

px
0





 and

*()p1 x
0

 



;

when
4

1
l   ,

*

px
0





 and

*()p1 x
0

 



.

Proof.

* [() ()]2

p

1
x 2 2 3 1 l

3
     .

When pk = 1 and
ok = 0 . Taking derivatives of *

px

with respect to  and  respectively, we have

*
2(2)

[1]
2 () ()

p

2

x 1 2

3 2 3 1 l

  
  

   

and

*
2()

[1]
2 () ()

p

2

x 1 2 3

3 2 3 1 l

  
  

   
.

Because *

p0 x 1  , 1 l 0  .

Therefore,

*

px
0





 and

*()p1 x
0

 



.

Moreover,

*

px
0





 and,

*()p1 x
0

 



, if

4

1
l   ,

*

px
0





 and

*()p1 x
0

 



, if

4

1
l   .

Proposition 4 shows that, in the case of inward

compatibility: (i) the intensity of network externalities

higher, the software location of proprietary software not

closer to open source software and software differentiation

not bigger; (ii) when the learning (maintenance or

development) costs of open source software are high

enough, the user’s development skills higher, the software

location of proprietary software closer to open source

software and software differentiation smaller, and the

opposite situation may appear when the learning

(maintenance or development) costs of open source

software are low enough. However, when the intensity of

network externalities is high enough (1 4 ), the user’s

development skills higher, the software location of

proprietary software closer to open source software and

software differentiation smaller no matter the level of open

source software’s learning (maintenance or development)

costs.

When proprietary software and open source software

are outward compatibility (pk = 0 and
ok =1), this is the

case that proprietary software is incompatible open source

software, but open source software is compatible with

proprietary software. This case is seldom in reality.

Proposition 5: When pk = 0 and
ok =1 , there are:

(i)

* *

p px x
0

 
 

 
 and

* *() ()p p1 x 1 x
0

   
 

 
, if

4

1
l 

(ii)

* *

p px x
0

 
 

 
 and

* *() ()p p1 x 1 x
0

   
 

 
, if

4

1
l  .

Proof.

* [() ()]2

p

1
x 2 2 3 1 l

3
    

When pk = 0 and
ok =1 . Taking derivatives of *

px

with respect to  and  respectively, we have

* *
2()

[1]
2 () ()

p p

2

x x 1 2 3

3 2 3 1 l

   
   

    

Thus,

* *

p px x
0

 
 

 
 and

* *() ()p p1 x 1 x
0

   
 

 
, if

4

1
l  ,

* *

p px x
0

 
 

 
 and

* *() ()p p1 x 1 x
0

   
 

 
, if

4

1
l  .

Proposition 5 indicates that, in the case of outward

compatibility, when the learning (maintenance or

development) costs of open source software are high

enough, the intensity of network externalities (or user’s

development skills) higher, the software location of

proprietary software closer to open source software and

software differentiation smaller, and the opposite situation

appears when the learning (maintenance or development)

costs of open source software are low enough.

Through the above propositions, we find that

proprietary software firm’s software location and software

differentiation strategy may be different in different cases

of compatibility. Moreover, how network externalities and

user’s development skills affect proprietary software

firm’s software location and software differentiation may

also be different when proprietary software and open

source software implement different compatible strategies.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 432-437 Xing Mingqing

437

5 Conclusions

By modifying the Hotelling model, this study investigates

the software location and software differentiation strategy

for proprietary software firms when open source software

appears. This paper assumes that proprietary software firm

pursues profit maximization and open source software is

free for users. When the software market is fully covered,

the following conclusions are found: (i) Higher (resp.

lower) the (maintenance or development) learning costs of

open source software, smaller (resp. greeter) the software

differentiation between open source and proprietary

software; (ii) the compatibility degree between proprietary

and open source software impacts the software

differentiation; (iii) how network externalities and user’s

software development skills influence the software

location and software differentiation strategy for

proprietary software firm depends on the compatibility

degree between proprietary and open source software.

Acknowledgement

We acknowledge the financial support from Natural

Science Foundation of Shandong Province (No.

ZR2013GL005), Social Science Planning Research

Project of Shandong Province (No. 12CJRJ17), Shandong

province soft science research plan (No. 2014RKB01165)

and Shandong Higher School of Humanities and Social

Science Research Projects (No. J13WF11).

References

[1] Netcraft, September 2001 web server survey. Available from:

http://survey.netcraft.com/Survey/index-200109.html
[2] Netcraft, November 2006 web server survey. Available from:

http://news.netcraft.com/archives/web_server_survey.html

[3] Weber S 2004 The Success of Open Source Harvard University
Press

[4] O’Reilly T 1999 Lessons from Open-source Software Development

Communications of the ACM 42 33-7
[5] Dalle J, Jullien N 2002 Open-source vs. Proprietary Software

Working paper

[6] Raghunathan S, Prasad A, Mishra B K, Chang H 2005 Open Source
versus Closed Source: Software Quality in Monopoly and

Competitive Markets IEEE Trans. Systems, Man, Cybernetics: Part

A: Systems and Humans 35 903-18
[7] Meng Z, Lee S Y 205 Open Source vs. Proprietary Software:

Competition and Compatibility Paper provided by EconWPA in its

series industrial organization with number 0508008
[8] Economides N, Katsamakas E 2006 Two-sided Competition of

Proprietary vs. Open Source Technology Platforms and the

Implications for the Software Industry Management Science 52

1057-71
[9] Lin L H 2008 Impact of User Skills and Network Effects on the

Competition between Open Source and Proprietary Software

Electronic Commerce Research and Applications 7 68-81
[10] Xing M Q 2010 The Quantity Competition between Open Source and

Proprietary Software Proceedings of International Conference on

Information Management, Innovation Management and Industrial
Engineering 184-7

[11] Cheng H, Liu Y P, Tang Q 2011 The Impact of Network Externalities

on the Competition between Open Source and Proprietary Software
Journal of Management Information Systems 27 201-30

[12] Gramstad A R 2014 Piracy in Commercial vs. Open-Source Software

Competition Available from:
http://www.sv.uio.no/econ/english/research/news-and-

events/events/conferences/2014/papers/gramstad_norio15may.pdf

[13] Katz M, Shapiro C 1985 Network Externalities, Competition, and
Compatibility American Economic Review 75 424-40

[14] Hotelling H 1929 Stability in Competition Economic Journal 39 41-

57

Author

Mingqing Xing, born in November, 1979, Shandong province, P.R. China.

Current position, grades: associate professor China of Weifang university.
University studies: graduated from College of Science of China Agriculture University in 2009 in China.
Scientific interest: software competition, two-sided market theory.
Publications: more than 30 papers published in various journals.
Experience: teaching experience of 5 years, 8 scientific research projects.

